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JAN G. WISSINK*

Department of Mathematics, University of Groningen, PO Box 800, NL-9700 AV Groningen, The Netherlands

SUMMARY

Two-dimensional `turbulent' ¯ow around a rectangular cylinder has been simulated at Re� 10,000 using a sixth-
order-accurate ®nite volume method for the discretization of convection and diffusion. The spatial discretization
consists of a combination of a seventh-order upwind-biased method for the convective terms and an eighth-order
central method for the diffusive terms, discretized on a stretched and staggered grid. To cope with the stretching
of the grid, Lagrange interpolations are used.

The method applied to obtain a boundary condition for the velocity in the x-direction at the out¯ow boundary
is shown not to affect the ¯ow in the interior of the computational domain in a way that is visible in various
snapshots of the vorticity ®eld. The variation in the velocity in the x-direction with time is itself found to be
relatively small near the out¯ow boundary.

Several turbulence statistics have been gathered from a simulation of the ¯ow developed during 77
dimensionless time units. Snapshots of the vorticity ®eld of the developed ¯ow show the presence of a vortex-
street-like structure. Typical 2D turbulent behaviour, such as the appearance of monopolar, dipolar and tripolar
vortices due to the amalgamation of vorticity in the wake and the xÿ1=2 scaling of the velocity defect in the wake,
has been obtained. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two-dimensional ¯ow around bluff obstacles is interesting because the results obtained in studying

vortex-shedding phenomena are applicable to the construction of buildings (large rectangular boxes),

cars, etc. Much work has been done in simulating 2D ¯ow around such bluff obstacles at moderate

Reynolds numbers. In particular, 2D ¯ow around circular cylinders has been studied extensively. The

transition process in the wake of a circular cylinder can only be described by two-dimensional

numerical simulations such as performed by Gresho et al.,1 Karniadakis et al.2 and Braza et al.3 for a

small range of Reynolds numbers. Experiments report a strong three-dimensional behaviour when the

Reynolds number exceeds 200.4 A time trace of the streamwise velocity in the near wake of a circular

cylinder in a two-dimensional simulation performed by Karniadakis and Triantafyllou5 at Re � 500,

however, shows that a time-periodic ¯ow state is obtained, leading to the idea that the transition is

caused entirely by three-dimensionality. The main difference between ¯ow around a circular cylinder

and ¯ow around a square cylinder is the fact that only in the case of a square cylinder is the position

of the frontal separation points ®xed, which is found to have some in¯uence on the dynamical

behaviour of the ¯ow in the transitional regime.6 In this paper the 2D turbulent regime at Re� 10,000
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will be studied. Though 2D turbulence is quite different from its 3D counterpart, it is worth studying

on its own merits. In geophysics and astrophysics, 2D turbulence is not an unusual phenomenon.7 It is

interesting to study which low-Reynolds-number structures persist in 2D turbulence. In 3D ¯ow

around a square cylinder, for instance, the 2D vortex street is still recognizable for Reynolds numbers

larger than the Reynolds number at which the ®rst 3D effects occur.6 Another interesting feature of

this 2D turbulent ¯ow is the self-organization principle, which causes the emergence of some typical

vortical structures (monopolar, dipolar and even tripolar) in the wake of the cylinder.

Having performed direct numerical simulations of various 1D and 2D test problems,8 the seventh-

order upwind-biased method and the fourth-order central method are found to be the most ef®cient

methods for the discretization of the convection. The 2D ¯ow simulation is more complex, because

an outer ¯ow has to be simulated. The main dif®culty encountered is the treatment of the boundary

condition downstream. This boundary condition needs to be prescribed such that it does not have a

signi®cant in¯uence on the ¯ow in the inner region of the domain. Attempting to use the fourth-order

central method for the discretization of the convective terms led to spurious oscillations at the out¯ow

boundary, causing the numerical scheme to become unstable. The seventh-order upwind-biased

method, however, manages to suppress these non-physical oscillations such that the in¯uence on the

¯ow in the inner region is negligible.

The numerical method employed here is based on the marker-and-cell method of Harlow and

Welch,9 using a second-order-accurate central discretization of the conservation of mass and of the

pressure gradient, combined in the interior of the computational domain with a seventh-order-

accurate upwind-biased discretization of the ®rst-order derivative in the convection and a sixth-order

interpolation to cope with the staggering of the grid. The diffusive terms are discretized using an

eighth-order-accurate central method.

Performing a simulation at Re� 10,000 using only 2006 200 grid points resulted in spurious

oscillations appearing near the corners of the cylinder. Upon enhancing the number of grid points to

4006 400 (the number of grid points at which the actual simulations presented in this paper are

obtained), these oscillations were found to disappear completely.

In Section 2 the test problem and the numerical method used to solve this problem are introduced.

The numerical results approximating the ¯ow in the turbulent regime are presented in Section 3,

while in Section 4 a summary is given of the results obtained.

2. DESCRIPTION OF NUMERICAL EXPERIMENTS

In this paper, two-dimensional ¯ow around a square cylinder at various Reynolds numbers is

simulated. The Newtonian ¯uid in question is described by the incompressible Navier±Stokes

equations, which consist of the following conservation laws: conservation of mass,

H � ~u � 0; �1�
and conservation of momentum (with the convection in non-conservative form),
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where u is the velocity in the x-direction, v is the velocity in the y-direction and Re � U0h=n is

the Reynolds number (based on the height of the block, h, the characteristic velocity of the in¯ow

®eld, U0 and the kinematic viscosity n). Discretizing the Navier±Stokes equations using the
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primitive variables makes it straightforward to generalize the numerical discretization to 3D. The

discretizations of the 2D Navier±Stokes equations are performed on a staggered grid as illustrated in

Figure 1.

For some background material on the basic numerical algorithm we refer to Reference 9.

2.1. Con®guration of ¯ow problem

In Figure 2 the test problem is illustrated. The simulation is performed on several stretched grids.

The cylinder is placed on the length axis (y� 0) of the computational domain. At the left-hand-side

boundary (the in¯ow) the ¯ow is prescribed to be uniform: the same boundary conditions are applied

to the upper boundary and the lower boundary. To obtain a boundary condition for the x-velocity at

the out¯ow boundary is more dif®cult. Because the Reynolds number of the ¯ow is rather large, the

diffusion term @2u=@x at the right-hand-side boundary is neglected, parabolizing (2). The pressure

gradient in the x-direction, @p=@x (which is much smaller in the far wake than near the cylinder), is

also neglected in order to obtain the equation
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;

Figure 1. Stretched and staggered grid in neighbourhood of cylinder

Figure 2. Con®guration of ¯ow problem
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with which, using the second-order upwind scheme (20) to discretize @u=@x, the velocity u at the new

time level t � tn�1 at the out¯ow boundary is obtained.

The stretched grid in the x-direction is obtained by the transformation

�dx�i � fxhxf1� a cos��10p=6��iÿ 1
2
�hx � p=3�g; �4�

where fx is the multiplication factor needed to ensure that
Pibhÿ1

i�ibl �dx�i � 1; hÿ1
x is the number of grid

points in the x-direction and a is a stretching parameter with a typical value of about 7
10

. In a similar

way the stretched grid in the y-direction is de®ned by

�dy�j � fyhyf1� a cos�2p� j ÿ 1
2
�hy�g; �5�

where fy is determined such that
Pjbhÿ1

j�jbl �dy�j � 1 and hÿ1
y is the number of grid points in the y-

direction. The parameters ibl, ibh, jbl and jbh determine the position of the cylinder in the grid.

2.2. Spatial discretization

In this subsection the numerical methods used for the discretization in space are described. For

simplicity we assume the grid spacing to be equidistant and the grid width in the x-direction, dx, to be

equal to the grid width in the y-direction, dy �dx � dy � h�. Generalization to the stretched grid used

in the numerical simulations is straightforward using Lagrange interpolations.

2.2.1. Discretization of conservation laws. Numerically the conservation of mass is described by

�div
�q�
h ~u�n�1 � 0; �6�

where q denotes the order of the central discretization used. The discrete form of the conservation of

momentum can be written as

~un�1 ÿ ~un

Dt
� ÿ�grad

�r�
h p�n�1=2 � an�1=2

bn�1=2

� �
; �7�

where the last vector on the right-hand side is a discretized form of the convective and diffusive terms

and r denotes the order of the central FD method used; for example, putting r � 2 results in
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Because we use a staggered grid, �grad
�r�
h p�n�1=2

i; j must be evaluated at �xi�1=2; yj� for the x-component

and at �xi; yj�1=2� for the y-component. If we write (using the second-order-accurate explicit Adams±

Bashforth scheme to obtain ~a at t � tn�1=2)

~an�1=2 � an�1=2

bn�1=2

� �
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2
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� �
ÿ 1

2

anÿ1

bnÿ1

� �
;

the substitution of (7) into (6) results in the equation

div
�q�
h �grad

�r�
h p�n�1=2

i; j � 1

Dt
�div

�q�
h ~u�ni; j � �div

�q�
h ~a�n�1=2

i; j : �9�
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If we substitute f
n�1=2

i; j for the right-hand side of (9), we obtain the standard form

div
�q�
h �grad

�r�
h p�n�1=2

i; j � f
n�1=2

i; j . Putting (for example) q � r � 2, we obtain the second-order-accurate

discretization of (9) used in this study:

p
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i�1; j � p

n�1=2
i; j�1 ÿ 4p

n�1=2
i; j � p

n�1=2
iÿ1; j � p

n�1=2
i; jÿ1

h2
� f

n�1=2
i; j : �10�

2.2.2. Discretization of convective terms in non-conservative form. In (7) the discretized form of

the convective and diffusive terms is referred to as an for the x-component of the momentum equation

and bn for the y-component. In this subsection we shall give these discretizations.

To get a discretization of the convective terms, we must obtain interpolated values �I �m�1;h u�ni; j and

�I �m�2;h v�ni; j of u and v. In this notation, m is the order of interpolation. For example, taking m � 2 results

in the discretization

�I �2�1;hu�ni; j

�I �2�2;hv�ni; j

0@ 1A � 1
2
�un

i�1=2; j � un
iÿ1=2; j�

1
2
�vn

i; j�1=2 � vn
i; jÿ1=2�

 !
: �11�

Central FD methods for the ®rst-order derivative are dispersive in nature (i.e. their main truncation

error is dispersive); this can lead to the occurrence of aliasing errors10 which have to be controlled

(e.g. by discretizing the convection in a kinetic-energy-conserving form) in order to be able to

perform long-time integrations. Upwind and upwind-biased FD methods are dissipative in nature;

because of this, more kinetic energy is dissipated at the smaller length scales than is the case when

using central FD methods. That is the reason why upwind(-biased) discretizations of the convection

do not need any other aliasing error control mechanisms and thus can be programmed in a non-

conservative form. The corresponding discretization reads

�conv
�s;m�
x;h ~u�ni�1=2; j � un

i�1=2; j

@

@x
�u�ni�1=2; j � vn
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for the convective term in the x-momentum equation and
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for the convective term in the y-momentum equation. In both equations, s represents the order of the

upwind-biased method. In the case where u > 0, the upwind-biased method B
�s�
x;hu is de®ned for s � 3

by

�B�3�x;hu�ni�1=2; j �
un

iÿ3=2; j ÿ 6un
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6h
; �14�

for s � 5 by

�B�5�x;hu�ni�1=2; j �
ÿ2un

iÿ5=2; j � 15un
iÿ3=2; j ÿ 60un
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and ®nally for s � 7 by

�B�7�x;hu�ni�1=2; j

� 3un
iÿ7=2; jÿ28un

iÿ5=2; j�126un
iÿ3=2; jÿ420un

iÿ1=2; j�105un
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i�7=2; j

420h
:

�16�

2.2.3. Discretization of diffusive terms. The diffusive terms in the x-momentum equation are

discretized as

�diff
�r�
x;hu�ni�1=2; j �

�D2
�r�
x;hu�ni�1=2; j � �D2

�r�
y;hu�ni�1=2; j

Re
; �17�

where r denotes the local order of accuracy; for example, for r � 2;D2x;h is de®ned by

�D2
�2�
x;hu�ni�1=2; j �

un
i�3=2; j ÿ 2un

i�1=2; j � un
iÿ1=2; j

h2
: �18�

To get a discretization of an and bn, we combine equation (12) with (17) and equation (13) with the

discretization of the diffusion in the y-momentum equation and obtain

an

bn

 !
�
ÿ�conv

�s;m�
x;h ~u�ni�1=2; j � �diff

�r�
x;hu�ni�1=2; j

ÿ�conv
�s;m�
y;h ~u�ni; j�1=2 � �diff

�r�
y;hv�ni; j�1=2

0@ 1A: �19�

2.2.4. Discretization at boundaries. In the neighbourhood of all boundaries, smooth transitions

from the higher-order methods used in the interior of the computational domain to second-order

methods are made. Such a smooth transition is made possible by selecting the intermediate

discretizations such that they are of the same type as the discretization used in the inner region,

except in the neighbourhood of the wall, where, when the ¯ow is directed away from the wall, for the

discretization of the ®rst-order derivative in the convection the third-order upwind-biased method is

replaced by the second-order central method instead of the ®rst-order upwind method. This is

illustrated in Figure 3, where full circles correspond to grid points where the discretized form of

u@u=@x is evaluated, open circles correspond to other nodes of the discretization stencil and C
�2�
x;h is

de®ned by

�C�2�x;hu�ni�1=2; j �
un

i�3=2; j ÿ un
iÿ1=2; j

2h
:

Similarly, the eighth-order discretization of the diffusive terms in replaced by a sixth-, a fourth- and

®nally second-order method in the vicinity of the wall.

Figure 3. Discretization of u@u=@x at left boundary
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As mentioned before in Section 2.1, at the right-hand-side boundary the x-momentum equation is

parabolized in order to obtain suitable boundary conditions for un�1
nx�1=2; j; j � 1; . . . ; ny. Using the

second-order upwind discretization de®ned by

�B�2�x;hu�nnx�1=2; j �
3un

nxÿ3=2; j ÿ 4un
nxÿ1=2; j � un

nx�1=2; j

2h
; �20�

we obtain the convection term

�conv
�s;m�
rhs;x;h~u�nj � un

nx�1=2; j�B�2�x;hu�nnx�1=2; j � �I �m�2;h �I �m�1;h v��nnx�1=2; j�B�s�y;hu�nnx�1=2; j: �21�
Using this, we are able to determine the boundary condition for u at t � tn�1:

un�1
nx�1=2; j � un

nx�1=2; j � Dt ÿ�conv
�s;m�
rhs;x;h~u�nj �

1

Re
�D2

�r�
y;hu�nnx�1=2; j

� �
: �22�

3. RESULTS

Using a 4006 400 grid, a simulation at zero angle of attack has been performed at Re� 10,000. At

the beginning of the simulation (starting with a uniform ¯ow ®eld), rather small vortices of opposite

sign are shed in parallel, as illustrated by the perfect symmetry of the vorticity ®eld plotted in Figure

4. The symmetric ¯ow shown in this ®gure is, however, not a stable solution at Re� 10,000. Already

at Recrit somewhere between Re� 45 and 50 a Hopf bifurcation occurs.6 The symmetric solution

obtained for Re < 45 eventually breaks for Re > Recrit. Owing to small numerical errors, an unstable

mode is introduced to the solution and eventually the symmetry of the solution will break.

After the breaking of the symmetry the ¯ow behind the cylinder behaves very chaotically. A lot of

very small vortices and ®laments appear just behind the cylinder. Further away from the cylinder

these small vortices amalgamate to form larger vortical structures. Several of these structures, such as

monopolar, dipolar and even tripolar vortices, can be found in the snapshots plotted in Figure 5.

Though the ¯ow is turbulent (in the sense that it behaves chaotically), a vortex-street-like structure is

still clearly visible at the back of the cylinder. This phenomenon is not unique. Snapshots of the

Figure 4. Two snapshots showing initial evolution of vorticity ®eld at Re� 10,000 starting with uniform velocity ®eld. Vortices
of opposite sign are shed in parallel
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vorticity ®eld at later times all show such a vortex-street-like structure. Thus we may conclude that it

is not a transient phenomenon.

For 77 s* (corresponding to about 12 cycles of vortex shedding) a simulation of the developed

turbulent ¯ow at Re� 10,000 has been performed to gather some turbulence statistics. In Figure 6,

Figure 5. Four snapshots, each 1 s apart, showing evolution of vorticity ®eld at Re� 10,000 a long time after breaking of
symmetry. The light grey areas correspond to positive vorticity while the darker areas correspond to negative vorticity. The
initially small vortical structures in the near wake of the cylinder amalgamate to form various kinds of coherent vortical

structures further away from the cylinder

* In this paper the dimensionless time unit h=U0 is referred to as 1 s.
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time-averaged u-velocity pro®les at the upper side of the cylinder are plotted. A large recirculation

region covering almost the entire upper side of the block is clearly visible. Also, at x � ÿ0�36 (just

behind the front corner of the cylinder) a small secondary recirculation region is visible.

The time-averaged (mean) u-velocity pro®les plotted in Figure 7 have been gathered at various

stations at which x� constant behind the cylinder, each one unit length apart. The ®gure clearly

illustrates the in¯uence of the bluff body present upstream on the mean ¯ow which is uniform at the

left-hand-side boundary.

If Umax�x� � max
y

�u�x; y� and Umin�x� � min
y

�u�x; y� (where the bar denotes taking the mean value),

then the mean velocity defect Us is de®ned by

Us�x� � �Umax ÿ Umin��x�:
Theoretically the mean velocity defect should obey the scaling law

Us�x� / �xÿ x0�ÿ1=2

in the far 2D turbulent wake for some ®xed x0.11 Despite the fact that the turbulence statistics are

gathered rather close behind the cylinder, the numerical results are found to obey this scaling law

Figure 6. Mean u-velocity pro®les at various stations along upper side of cylinder at Re� 10,000

Figure 7. Mean u-velocity pro®les at various stations through turbulent wake of cylinder at Re� 10,000
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Figure 8. Comparison of numerical approximations of Us at various stations through turbulent wake of cylinder with ®tted
graph of Us;th corresponding to theoretical scaling law

Figure 9. Reynolds stresses of turbulent ¯ow around square cylinder at Re� 10,000 obtained during 77 s simulation of
developed ¯ow
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very well. This is illustrated in Figure 8, where with the function Us;th�x� � 0�373=
p�xÿ 1�84� a

good ®t of the numerical results is obtained.

If we denote the mean velocities by U � �u and V � �v, then the ¯uctuating velocities are de®ned by

u0 � U ÿ u and v0 � V ÿ v. The Reynolds stresses R11 � u0u0;R12 � u0v0 and R22 � v0v0 plotted in

Figure 9 show that the part of the ¯ow that is turbulent is spatially con®ned to rather small regions

behind the cylinder and at the upper and lower sides of the cylinder. In the far wake the turbulence is

found to decay.

Studying the snapshots presented in Figures 4 and 5 shows that the out¯ow boundary condition

applied has no noticeable affect on the vorticity ®eld in the interior of the computational domain. The

only visible affect that occurred was some smearing of vorticity at the out¯ow boundary itself.

Furthermore, the top graph in Figure 9 shows that in the neighbourhood of the out¯ow boundary the

variation in u with time is relatively small, indicating that the omission of the pressure gradient in the

parabolized x-momentum equation is justi®able.

4. CONCLUSIONS

Turbulent two-dimensional ¯ow around a rectangular cylinder has been simulated. The simulations

have been performed using a seventh-order upwind-biased method to discretize the convective terms

(combined with a sixth-order interpolation to cope with the staggering of the grid) and an eighth-

order central discretization for the diffusive terms. The results obtained at Re� 10,000 lead to the

following conclusions.

1. Though the ¯ow is turbulent, a vortex-street-like structure is still visible.

2. Owing to the amalgamation of vortices, various kinds of rather large vortical structures, such as

monopolar, dipolar and tripolar vortices, appear in the wake of the cylinder.

3. At the upper and lower sides of the cylinder, (turbulent) shear layers develop accompanied by

large recirculation regions just above and below the cylinder.

4. In the time-averaged velocity ®eld, small secondary recirculation regions are present just behind

the forward corners of the cylinder.

5. The mean velocity defect Us in a large part of the turbulent wake of the cylinder is found to

obey the scaling law Us / �xÿ x0�ÿ1=2 for some ®xed number x0.

6. The turbulence is found to be con®ned to rather small areas behind and at the upper and lower

sides of the cylinder.
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